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Abstract

Let A and B be two atoms or, more generally, a 'source' and a 'detector' separated by

some distance R. At t = 0 A is in an excited state, B in its ground state, and no photons

are present. A theorem is proved that in contrast to Einstein causality and finite signal

velocity the excitation probability of B is nonzero immediately after t = 0. Implications are
discussed.

To study and check finite signal velocity, Fermi [1] considered two atoms A and B separated by a

distance R. At time t = 0 atom A is assumed to be in an excited state leA> and B in its ground

state IgB/, with no photons present. Atom A will decay to its ground state under the emission of

a photon which may then be absorbed by atom B. Fermi asked when atom B will notice A and

start to move out of its ground state. In accordance with Einstein causality, i.e. no propagation

faster than the speed of light, he expected this to occur after a time t = R/c. This was indeed

what Fermi found by his calculation.

More than thirty years later Shirokov [2] pointed out that Fermi's 'causal' result was the

artefact of an approximation. Indeed, Fermi had replaced an integral over positive frequencies by

an integral ranging from -oo to co. Without this approximation his calculation would not have

given the expected result.

Moreover, Fermi had calculated the probability for a transition to A nonexcited, B excited and

no photons, i.e. the transition probability from the state leA)lgs)lOph} to the state Iga)leB)[0ph),

which requires measurements on A, B and photons simultaneously. Hence this 'exchange' prob-

ability does not refer to finite signal velocity or Einstein causality but to 'local' or 'nonlocal'

correlations. What is really needed for finite signal velocity is the probability of finding B excited,

irrespective of the state of A and of possible photons.This will be called the excitation probability
of B.

Fermi's problem was investigated by many authors in this or in a related form, e.g. by Heitler

and Ma [3], Hamilton [4], Fierz [5], Ferretti [6], Milonni and Knight [7], Shirokov [2] and his

review [8], Rubin [9], Siswas et al. [10], and Valentini [11]. The older papers confirmed Fermi's

conclusion, while the results of the later papers depend on the model and the approximations

used. At present there seems to be agreement that Fermi's 'local' result is not correct, but that

this nonlocality cannot be used for superluminal signal transmission since measurements on A and

B as well as on photons are involved.

393



Usually previous authors have used 'bare' states and a Hamiltonian of the form

Hbar¢ = HA "F lib + HF "4- HAF "4- HBF (I)

where HAF and HBF represent the coupling of atoms A and B to the quantized radiation field.

The Hilbert space is simply a tensor product,

7%_,_ = 7_A x _s x 7_F. (2)

The initial state is then

I¢0_) = leA)lgs)10_h). (3)

The probability of finding B in some excited state, irrespective of the state of A and photons, is a

sum over all excited states [eB) of S, over all states [iA) of A and over all photon states [{n}), i.e.

e8 iA {n}

= (¢t_l { _ lia)leB)l{n})({n}l(est(iAI} let_)
iA ,eB,{n}

- (¢_1 1A x _les)(esl x 1F I¢__) (4)
eB

where the completeness relation for orthonormal bases has been used. The operator

oeb_''_ ----1A x _ [es)(es[x lv (5)
eB

represents the observable "B is in a bare excited state", and it is a projection operator. The

expectation value of O,b_ gives the excitation probability of B.
For bare states, however, there is a serious difficulty. Even with atom A absent and no photons

present atom B will be immediately excited under simultaneous emission of photons! This well-

known unphysical behavior is a consequence of the interaction term HBF because then the bare

ground state [gs)[0ph) is no longer an eigenstate of the bare Hamiltonian. Therefore, all results

for bare states have to be considered with caution.

Valentini [11] and also Biswas et al. [10] have found the following interesting result for bare

states by using perturbation theory and cutoffs. They calculated that for t < R/c the bare ground

state of B behaves as if the excited atom A were not present. This result seems to indicate a causal

behavior and suggests a similar result for a properly renormalized theory. This, however, wiU be

shown not to be the case.

Fermi's problem of finite signal velocity will now be treated under very plausible assumptions

without bare states. Although a renormalized theory has yet to be constructed only two basic

properties of such a supposedly existing theory are needed. The first is that the states of such

a theory form a Hilbert space, denoted by 7"/,_. The other property needed is a renormalized

selfadjoint Hamiltonian H,_n which is bounded from below, e.g. by 0. The assumption of positive

energy is standard and physically well-motivated.

In general _,_,, is no longer a tensor product,

_n # _A x _s x 7"/v, (6)
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and the initial state, denoted by [¢0), will not be a simple product state,

I¢0) # I A>IgB)ICph)•

Similarly, if the observable "B is in an excited state" makes sense and is represented by an

operator O,B then in general O, 8 # O _" However, O, B will still be a projection operator since
--CB •

its eigenvalues are 1 for 'yes' and 0 for 'no'. The excitation probability of B at time t is then given

by the expectation value

Alternatively one may assume that the excitation probability of B is an expectation value of some

positive operator, or one may measure the excitation through a positive observable which vanishes

for the ground state, e.g. some operator related to the square of the dipole moment [12]. In all

these cases one will run into difficulties with Einstein causality.

No point-like localization of A and B is required. As a generalization of Fermi's set-up A and B

may be systems initially localized in two regions separated by a distance R with no (real) photons

present. The ground state of B may be degenerate.

We note that measurements of the excitation probability of B involves measurements on B

only and that P_(t = O) = O. One would expect, as Fermi, that

P_(t) = 0 for 0<t<Rlc. (7)

However, in a slightly different context a theorem of the author [13] as well as prior [14] and

later results [15, 16, 17, 18] showed difficulties with causality in particle localization [19]. Although

the theorem is not applicable here - it applies to free particles or to the center-of-mass of systems

- it makes one wary. Indeed, as a complement to this first theorem I will now show a second

theorem which includes interactions.

Theorem. Let the Hamiltonian be positive or bounded from below and let the initial state

at time t = 0 be

A in an excited state,]_b0) = B in a ground state, no photons.

Let P_(t) be the probability of finding B excited,

p (t) = ooB (s)

where OrB is a projection operator or, more generally, a positive operator.
Then either

(i) The excitation probability of B is nonzero for almost all t, and the set of such t's is dense

and open.

or

(ii) The excitation probability of B is identically zero for all t.

Remarks. Alternative (i) means that B starts to move out of the ground state immediately

and is thus influenced by A instantaneously, in contrast to Einstein causality. Alternative (ii) is

clearly unphysical since in this case B is never excited so that B is never influenced by A.
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The proof is basicallyverysimpleand usesonly thepositivity of Hren, or rather its boundedness

from below, and the fact that one deals with the expectation value of a positive selfadjoint operator.

Proof of theorem. Since let/ is continuous in t, so is P_(t). Hence, if for some ta one has

P_(tl) > 0 then this also holds in a small interval around tl, and therefore the set is open. Now

let us assume that the set of t's with P_(t) > 0 is not dense. Then there is a small but finite

interval I such that

P_(t) = 0 for t eI. (9)

It will now be shown that this implies that alternative (ii) holds. Eq. (9) can be written as

(¢,1o_. led = 0 for t E I. (10)

If Oes is a projection operator then (O,B) 2 = O, B. Therefore Eq. (10) can be written as

(¢:I (o_) _ I¢:> = IIo_ I¢:>II=
= 0 for t6I. (11)

This means that

Oe s [_bt)= 0 for t E I. (12)

For Ors a positive operator the argument is similar [20]. Now let ¢ be any fixed vector and define

the auxiliary function F_(t) by

F_(t) = (¢10oB _-' g"=:/_l¢o). (13)

Then, by Eq. (12),

F_(O = 0

Since Hren > - const, one has that the operator

for tE I.

e-; H,o.(t+i_)/_

is well-defined for y < O. Putting z = t + iy one sees that F¢(z) can be defined as a continuous

function for Im z < O, and, moreover, F¢(z) is analytic for Im z < O. However, such an analytic

function cannot have boundary values vanishing on a real interval unless

F¢(z) - 0

for Im z # 0 [21]. But then, by continuity, one also has F¢(t) = 0 for all real t. Hence the right

side of Eq. (13) vanishes for all t. Since ¢ was arbitrary one has

O_Bl_/,t ) -= 0 for all t

and this gives P_(t) - O, i.e. case (ii).

This proves that P_(t) is either nonzero on a dense open set or that it vanishes identically.

In a slightly more sophisticated way it will now be shown directly that P_(t) is either nonzero

for almost all t or vanishes identically. Let the set of zeros of P_(t) be denoted by Af0. The
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same argument as before shows that F¢(t) vanishes there too. As a boundary value of a bounded

analytic function F¢(t) satisfies, unless it vanishes identically, the inequality [22]

f_ dtlog]F¢(t)l/(1 + t 2) > -oo .

If W'0 had positive measure the integral would be -cxz and thus F¢(t) would vanish identically in

t, for each ¢. This would again imply case (ii). Hence if case (ii) does not hold P_(t) can only

vanish on a null set [23]. This completes the proof of the theorem.

A typical behavior of the excitation probability of B according to (i) is shown in Fig. 3. No

estimate of the actual magnitude of P_(t) is provided by the above argument, except that is

nonzero for almost all t. It follows trivially for alternative (i) that the set of zeros of P_(t) is not

only of measure 0 but also nowhere dense.

It should be noted that the above proof makes no use of any spatial separation of the two

subsystems nor of its photon content. In fact, the theorem is a mathematically rigorous result

which holds for any initial state [_b0), any positive Hamiltonian and expectation value of any

positive operator [24]. Physics comes in only when one thinks of [¢0) as representing two spatially

separated subsystems with no photons. Of course, if the systems are not spatially separated part

(i) of the theorem comes as no surprise.

Extensions. The derivation does not need that A and B are atoms. The result clearly extends

to more general situations:

a) Larger systems: A may be some "source" of photons and B a "detector".

b) A and B may move.

c) Other particles and other interactions may be included.

Other positive observables can be considered. E.g., for an excited localized atom (or system)

with no real photons initially one obtains an acausal result for photons and electromagnetic energy

in regions not containing the atom. This is in contrast to a result by Kikuchi [25] who, at the

suggestion of Heisenberg, had studied this problem using the same approximation as Fermi [1].

The general case of a decaying particle or system can also be treated by the above approach.

Discussion. If the effect implied by the theorem were real it could in principle be used for

superluminal signals, with all the well-known consequences. However, the result may also be

viewed as a difficulty for the formulation of the underlying theory. The theorem is of the 'if-then'

type. To avoid its physical consequences one has to check whether its conditions or any additional

physical assumptions are fulfilled in a given situation. There are several possible ways out.

a) Systems localized in disjoint regions might not exist as a matter of principle, so that strictly.

speaking they always 'overlap'. Then an immediate excitation may evidently occur.

b) Renormalization will introduce a sort of photon cloud around each system. This essentially

implies an overlap of the systems, leading back to case a).

c) The notion of 'ground state of B' in the presence of A may not make sense. Without A

present one will expect a lowest energy state to exist for the system B plus radiation field, with

no real photons. However, with A present, the lowest state of the complete system may change.

Thus the 'ground state of B' may not be preparable independently of A. Effectively this also leads

back to case a).
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These possible ways out suggest implicitly that the problem is not well-posed, i.e. an exper-

imental set-up to check the theorem might not be feasible. But without disjointly localizable

sources and detectors how to check finite signal velocity at all?

One may argue that any violation of Einstein causality would be so rare or so small as to be

unobservable in practice. But then a good theory should contain this from the beginning. Should

quantum mechanics with its Hilbert space structure and its idealized measurements at sharp times

therefore be modified? The above result is based on the use of Hilbert space and a selfadjoint

time-development operator. This might not be appropriate any longer for systems with infinitely

many degrees of freedom.

Conclusion. Fermi's original question on finite signal velocity has been generalized and ana-

lyzed in a model-independent way, without the use of any 'bare' theory or any approximations.

Only positivity of the energy has been used. It has been shown that this leads to violation of

Einstein causality if one assumes that two subsystems, 'source' and 'detector', can be localized in

disjoint regions at some initial time. The view has been taken that this difficulty is of a theoretical

nature, and possible ways out have been discussed.
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